明渠流量计
您当前的位置 : 首 页 >> 新闻资讯 >> 公司新闻

联系我们Contact Us

企业名称:开封中志工控仪表有限公司

销售部

联系人:张乾

手机:15937811300 18903787891

电话:0371-26769788

流量计售后服务部

联系人:马总

手机:18903787893

浮球液位开关售后服务部

联系人:刘总

手机:18637834433

邮箱:591803015@qq.com

电话:0371-26769788

地址:河南省开封市祥符区宏达大道北段路西1号


【变频器】恒压供水变频器应用方案

发布日期:2016-07-27 00:00:00 作者: 点击:

变频恒压供水以其环保、节能和供水质量高等优点在供水行业中越来越得到认同。在城市小区化的发展中,采用以小区或社区为统一整体的供水方案,会使设备的利用率及节能比例大大提高,并减少初始投资和占地面积。

一、变频恒压供水代替传统恒压供水的优点

1. 变频恒压供水能自动24小时维持恒定压力,并根据压力信号自动启动备用泵,无级调整压力,供水质量好,与传统供水比较,不会造成管网破裂及开水笼头时的共振现象。
2. 避免了泵的频繁启动及停止,而且启动平滑,减少了电机水泵的启动冲击,增加了电机水泵的使用寿命,也避免了传统供水中的水锤现象。
3. 传统供水中设计有水箱,不但浪费了资金,占用了较大的空间,而且水压不稳定,水质有污染,不符合卫生标准,而采用变频恒压供水,此类问题也就迎刃而解了。
4. 采用变频恒压供水,系统可以根据用户实际用量,自动进行检测,控制马达 转速,达到节能效果。避免了水塔供水无人值班时,总要开启一个泵运行的现象,节省了人力及物力。
5. 变频恒压供水可以自动实现多泵循环运动功能,延长了电机水泵的使用寿命。 6. 变频恒压供水系统保护功能齐全,运行可靠,具有欠压、过流、过载、过热、缺相、短路保护等功能。

二、工作原理

  变频恒压供水系统采用电位器设定压力(也可采用面板内部设定压力),采用一个压力传感器(反馈为4~20mA)检测管网中压力,压力传感器将信号送入变频器PID回路,PID回路处理之后,送出一个水量增加或减少信号,控制马达转速。如在一定延时时间内,压力还是不足或过大,则通过PLC做工频变频切换,使实际管网压力与设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。 

1、供水原理


  变频技术通过调速节约了在改变阀门开度上造成的能量浪费,并且由于取消水塔而从原理上解决二次污染问题。阀门控制法的本质是水泵本身的供水能力不变,通过改变水路中的管阻大小来改变流量,以适应用户对流量的需求。而转速特性是在阀门开度不变的情况下,通过调节转速来达到用户要求的水量。我们知道流量与扬程的乘积近似为供水功率,如图1水泵的扬程特性及管阻特性图所示,假定现在用户用水量稳定在E点,我们可以看到在阀门开度不变的情况下单纯调节转速所需要的供水功率(面积OECD)小于转速不变而单纯调节阀门所需的供水功率(面积ABOE),所以说变频技术节约了能量,并且解决了二次污染问题。(如图1所示,面积ABCD即为节约的能量)。

 

 

图1 水泵扬程及管阻特性

 

  现有的变频水泵恒压供水方式基于PID控制原理,简单概括就是:维持管路供水压力的恒定。当用户用水量加大时,管路压力减小,变频器转速要提高以增加流量补充压力。反之,用户用水量减小时,管路压力增大,变频器转速要降低,使流量适当降低以使压力恒定。

2、多泵供水


  多泵供水是最常见的变频供水方案。多泵建筑供水系统普遍采用变频器循环控制方式。多泵控制思路是一拖多工变频结合复合式变流量变频供水。在小流量用水时工况,变频器带一台水泵运行,随用水量的变化,调整水泵的转速,实现恒压供水;当用水量增大,变频器达到50HZ时,变频器发出指令,使该变频泵切换到工频,同时使变频器带动下一台水泵变频软启动运行。随用水流量增大,以后各台水泵的软启动依次类推。当用水量减小时,先停转为工频运行的那台水泵。系统主电路如图1所示。有一点需要说明,由于水泵在工频运行时,变频器不可能对电机进行过载保护,所以必须接入热继电器FR,用于工频运行时的过载保护。

 

图2 一拖多变流量变频供水主电路

 

  我们以变频器YTD-HY系列为例,其输入,输出端子外部接线见图2,Y1-Y8为多功能继电器输出端子。为便于理解,把图1控制电路图进行简化,简化后的图省略了断路器,热继电器。在这之前我们要先注意到由于在变频器的输出端是不允许与电源相连接的,因此接触器KM1和KM2绝对不允许同时接通,相互之间必须有非常可靠的机械互锁。经验表明,KM1和KM2采用有机械互锁的接触器是工程推荐的机电复合可靠性设计。同时,电机側由KM1切离到KM2闭合之间的延迟时间也是必须的,这可通过调节HY系列变频器F109和F110的时间参数来实现。

 

  现在根据图2所示简略描述工变频切换过程。假定现在用户用水流量加大,管道中的压力减小,1号变频泵达到F011所设定的50HZ后仍未满足压力要求,此时需要加泵以补充管网压力,KM1要等到F109参数所设定的延迟时间后当面板显示初始频率后(变频器完全停止输出以后)断开,然后KM2要经过F110所设置的延迟时间后闭合,同时KM3闭合。
  当用户用水量继续加大,管道中的压力再一次下降,需要再次加泵以补充管网压力,频率达到F011所设定的参数50HZ后仍未满足压力要求,KM3要经过F110所设置的延迟时间后,当面板显示闪烁频率后断开,然后KM4要经过F109所设置的延迟时间后闭合,同时KM5闭合。
  当用户用水量减小时,管道中的压力回升,需要减工频泵,本着先起先停的原则,1号水泵先启动所以一号水泵先停,KM2断开。如果用水量进一步减小,再接着停2号水泵,KM4断开。此时只有3号水泵在变频运行,如果用水量再次减小(比如说深夜无人或很少人用水的情况下),输出频率减小,当变频器检测压力到参数F127(休眠压力)所设定的值后经过参数F125和F126,开始进入休眠状态。为了防止在短时间内水泵时起时停的“振荡”现象,需要设置一个确认时间T,如果低于下限频率的时间小于T,变频器可以不必理会;只有当超过下限频率的时间较长,大于确认时间T的时候,变频泵才会休眠。
  当夜间过去后,白天到来用水量开始增大,此时间变频器从休眠状态唤醒(3号泵开始唤醒,唤醒频率F011),当用水量继续增大,3号泵切为工频,1号泵切为变频,用水量再加大,2号泵切为变频,3号泵切为工频。以下不再详述。整个反复循环的过程可以参见说明书。我们看到参数F504最大设定值为4,也就是说最多可以带八台水泵。详细设置和循环过程可以参考YTD-HY系列说明书

3、多泵变频供水的电机切换


3.1 大电流冲击问题
  变频泵循环运行方式优点很多,但是实现起来却较复杂,关键问题是变频器输出切换问题。在非同步控制下,即变频器的频率和相位与共频电源的频率和相位不一致时,将水泵电动机从变频器供电切换到工频电网供电,将可能遇到很大的电流冲击。
  如图2所示,以第1台电机为例在KM1断开以后,定子绕组是开路的,不可能有励磁电流。而转子绕组是自成回路的,其电流有一个逐渐衰减的过程,它将产生一个逐渐衰减的直流磁场,而定子三相绕组将和此旋转的直流磁场相互切割,从而产生出相应的感应电动势,即电动机在切断电源以后,存在着一个处于非同步发电状态的电磁过渡过程。非同步发电状态不同于电动机的再生发电状态,电动机的再生发电状态是指定子绕组必须和电源相接,以得到励磁电流。而此处所述情况是电机已经脱离电源。
  一般来说我们在工程实践应用中,总结出来的经验是在水泵脱离变频器后,等待一段时间,待电动机的反电动势降下来以后再接到工频电源。如果不等待切换,即KM2在闭合的瞬间,即在电动机的反电动势比较高时切换,会发生两种情况,①电源电压恰好与电动机定子绕组的电动势同相(因为转子的转速在不断下降,所以反电动势的周期略大于工频电压的周期),此时切换无附加的冲击电流。②若电动机的反电动势与工频电压的相位差正好为180度,则情况最糟糕,一般的异步电动机将流过额定电流10倍左右的电流,对供电电网和电动机会产生过大的电流冲击。

 

3.2 问题对策
  针对这种情况可以采用监频监相控制器,用来监视切换时变频器输出的频率和相位,当其于工频电源的频率和相位一致时,再完成水泵由变频器到电源的切换。使切换后电流大致等于电动机的额定电流,基本实现对生产和电网无任何影响的无扰动切换。目前多数变频器循环运行的供水方式多采用延长切换时间的方法,来避开相位不一致造成的电势叠加。这也就是参数F109和F110的意义。

三、适用范围

  采用变频恒压供水,具有高效节能,压力稳定,运行可靠,操作简单,安装方便,占地少,噪音低,无污染,投资低,效益高等优点。特别适用于:

1. 宾馆、写字楼、公寓、居民小区等场所的生活给水和热水采暖系统。
2. 高层建筑、大型民用建筑的消防给水系统。
3. 工矿生产企业
4. 各类自来水厂


相关标签:关键词一

最近浏览:

联系我们

0371-26769788

传真号码:0371-26769788

客服号码:0371-26769788

公司地址:河南省开封市祥符区宏达大道北段路西1号

关注我们了解更多行业资讯

  • 1685345031376619.png

    手机网站

  • 1685344410853846.png

    扫一扫关注

企业分站 | 网站地图 | RSS | XML |
热推产品  |  主营区域: 山东 河北 江苏 开封 孝感 西藏 陕西 东莞 武汉 上海